Microneme protein 8--a new essential invasion factor in Toxoplasma gondii.
نویسندگان
چکیده
Apicomplexan parasites rely on sequential secretion of specialised secretory organelles for the invasion of the host cell. First, micronemes release their content upon contact with the host cell. Second, rhoptries are discharged, leading to the formation of a tight interaction (moving junction) with the host cell, through which the parasite invades. The functional characterisation of several micronemal proteins in Toxoplasma gondii suggests the occurrence of a stepwise process. Here, we show that the micronemal protein MIC8 of T. gondii is essential for the parasite to invade the host cell. When MIC8 is not present, a block in invasion is caused by the incapability of the parasite to form a moving junction with the host cell. We furthermore demonstrate that the cytosolic domain is crucial for the function of MIC8 and can not be functionally complemented by any other micronemal protein characterised so far, suggesting that MIC8 represents a novel, functionally distinct invasion factor in this apicomplexan parasite.
منابع مشابه
Characterization of a novel thrombospondin-related protein in Toxoplasma gondii.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades a wide range of host cells. The parasite releases a large variety of proteins from a secretory organelle, microneme, and the secretion is essential for the parasite invasion. We cloned a secreted protein with an altered thrombospondin repeat of Toxoplasma gondii (TgSPATR), which was the homologue of Plasmodium SPATRs...
متن کاملProtection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection
Toxoplasma gondii (T. gondii) microneme protein 8 (MIC8) represents a novel, functional distinct invasion factor. In this study, we generated virus-like particles (VLPs) targeting Toxoplasma gondii MIC8 for the first time, and investigated the protection against highly virulent RH strain of T. gondii in a mouse model. We found that VLP vaccination induced Toxoplasma gondii-specific IgG and IgG1...
متن کاملMicroneme rhomboid protease TgROM1 is required for efficient intracellular growth of Toxoplasma gondii.
Rhomboids are serine proteases that cleave their substrates within the transmembrane domain. Toxoplasma gondii contains six rhomboids that are expressed in different life cycle stages and localized to different cellular compartments. Toxoplasma rhomboid protein 1 (TgROM1) has previously been shown to be active in vitro, and the orthologue in Plasmodium falciparum processes the essential microne...
متن کاملTwo Phosphoglucomutase Paralogs Facilitate Ionophore-Triggered Secretion of the Toxoplasma Micronemes
Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be d...
متن کاملTrans-genera reconstitution and complementation of an adhesion complex in Toxoplasma gondii.
Eimeria tenella and Toxoplasma gondii are obligate intracellular parasites belonging to the phylum Apicomplexa. In T. gondii, the microneme protein TgMIC2 contains two well-defined adhesive motifs and is thought to be a key participant in the attachment and invasion of host cells. However, several attempts by different laboratories to generate a knockout (KO) of TgMIC2 have failed, implying tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 121 Pt 7 شماره
صفحات -
تاریخ انتشار 2008